THE DESIGN AND ANALYSIS OF COMPUTER ALGORITHMS

Alfred V. Aho
Bell Laboratories
John E Hopcroft
Cornell University
Jeffrey D. Ullman
Princeton University

Addison-Westey Publishing Company
Reading, Massachusetts - Menlo Park, California
London • Amsterdam • Don Mills, Ontario • Sydney

CONTENTS

1 Models of Computation
1.1 Algorithms and their complexity 2
1.2 Random access machines 5
1.3 Computational complexity of RAM programs 12
1.4 A stored program model. 15
15 Abstractions of the RAM 19
1.6 A primitive model of computation: the Turing machine 25
1.7 Relationship between the Turing machine and RAM models 31
1.8 Pidgin ALGOL - a high-level language 33
2 Design of Efficient Algorithms
2.1 Data structures: lists, queues, and stacks 44
2.2 Set representations. 49
2.3 Graphs. 50
2.4 Trees 52
2.5 Recursion. 55
2.6 Divide-and-conquer 60
2.7 Balancing 65
2.8 Dynamic programming 67
2.9 Epilogue. 69
3 Sorting and Order Statistics
3.1 The sorting problem. 76
3.2 Radix sorting. 77
3.3 Sorting by comparisons 86
3.4 Heapsort-an $O(n \log \mathrm{n})$ comparison sort. 87
3.5 Quicksort-an $O(n \log n)$ expected time sort 92
3.6 Order statistics 97
3.7 Expected time for order statistics 100
4 Data Structures for Set Manipulation Problems
4.1 Fundamental operations on sets 108
4.2 Hashing. Ill
4.3 Binary search 113
4.4 Binary search trees 115
4.5 Optimal binary search trees. 119
4.6 A simple disjoint-set union algorithm 124
4.7 Tree structures for the UNION-FIND problem 129
4.8 Applications and extensions of the UNION-FIND algorithm. 139
4.9 Balanced tree schemes 145
4.10 Dictionaries and priority queues. 148
4.11 Mergeable heaps. 152
4.12 Concatenable queues 155
4.13 Partitioning 157
4.14 Chapter summary. 162
5 Algorithms on Graphs
5.1 Minimum-cost spanning trees. 172
5.2 Depth-first search. 176
5.3 Biconnectivity 179
5.4 Depth-first search of a directed graph 187
5.5 Strong connectivity 189
5.6 Path-finding problems. 195
5.7 A transitive closure algorithm 199
5.8 A shortest-path algorithm 200
5.9 Path problems and matrix multiplication 201
5.10 Single-source problems. 207
5.11 Dominators in a directed acyclic graph: putting the concepts together 209
6 Matrix Multiplication and Related Operations
6.1 Basics 226
6.2 Strassen's matrix-multiplication algorithm. 230
6.3 Inversion of matrices 232
6.4 LUP decomposition of matrices. 233
6.5 Applications of LUP decomposition. 240
6.6 Boolean matrix multiplication 242
7 The Fast Fourier Transform and its Applications
7.1 The discrete Fourier transform and its inverse. 252
7.2 The fast Fourier transform algorithm 257
7.3 The FFT using bit operations 265
7.4 Products of polynomials. 269
7.5 The Schonhage-Strassen integer-multiplication algorithm. 270
8 Integer and Polynomial Arithmetic
8.1 The similarity between integers and polynomials 278
8.2 Integer multiplication and division 279
8.3 Polynomial multiplication and division 286
8.4 Modular arithmetic. 289
8.5 Modular polynomial arithmetic and polynomial evaluation 292
8.6 Chinese remaindering. 294
8.7 Chinese remaindering and interpolation of polynomials 298
8.8 Greatest common divisors and Euclid's algorithm 300
8.9 An asymptotically fast algorithm for polynomial GCD's. 303
8.10 Integer GCD's. 308
8.11 Chinese remaindering revisited 310
8.12 Sparse polynomials 311
9 Pattern-Matching Algorithms
9.1 Finite automata and regular expressions 318
9.2 Recognition of regular expression patterns. 326
9.3 Recognition of substrings 329
9.4 Two-way deterministic pushdown automata 335
9.5 Position trees and substring identifiers 346
10 NP-Complete Problems
10.1 Nondeterministic Turing machines 364
10.2 The classes $0>$ and $J f \&$ 372
10.3 Languages and problems 374
10.4 NP-completeness of the satisfiability problem 377
10.5 Additional NP-complete problems 384
10.6 Polynomial-space-bounded problems. 395
11 Some Provably Intractable Problems
11.1 Complexity hierarchies 406
11.2 The space hierarchy for deterministic Turing machines 407
11.3 A problem requiring exponential time and space 410
11.4 A nonelementary problem 419

CONTENTS

12 Lower Bounds on Numbers of Arithmetic Operations
12.1 Fields 428
12.2 Straight-line code revisited 429
12.3 A matrix formulation of problems 432
12.4 A row-oriented lower bound on multiplications 432
12.5 A column-oriented lower bound on multiplications. 435
12.6 A row-and-column-oriented bound on multiplications 439
12.7 Preconditioning. 442
Bibliography 452
Index 463

